A\ Language
;= Technologies
/)  Institute

Louis-Philippe (LP) Morency
Tadas Baltrusaitis

CMU Multimodal Communication and
Machine Learning Laboratory[MultiCOmp Lab]




Your Instructors

Louis-Philippe Morency
morency@cs.cmu.edu

. Tadas Baltrusaitis
‘ tbaltrus@cs.cmu.edu

2
Language Technologies Institute


mailto:morency@cs.cmu.edu
mailto:tbaltrus@cs.cmu.edu

CMU Course 11-777: Multimodal Machine Learning

plQZZQ 11777 Q&A  Resources Statistics  Manage Class . Louis-Philippe Morency

Carnegie Mellon University - Spring 2016

11-777: Advanced Multimodal Machine Learning

Syllabus & g (1] iy
Course Information Staff Resources Groups

Description 7/ Edt  Announcements show all + Add

Multimodal machine learning (MMML) is a vibrant multi-disciplinary research

field which addresses some of the original goals of artificial intelligence by

integrating and modeling multiple communicative modalities, including linguistic, Room assignments for paper discussion # Edit i Delete
acoustic and visual messages. With the initial research on audio-visual speech

recognition and more recently with language & vision projects such as image

and video captioning, this research field brings some unique challenges for (4/21/2016)
multimodal researchers given the heterogeneity of the data and the contingency

often found between modalities. This course will teach fundamental 4/21/16 3:41 PM
mathematical concepts related to MMML including multimodal alignment and

The randomized room assignment for the discussion tomorrow Thursday

fusion,. heteroge.neous replresemation learning anq multi—stream temporal 4/21 at 4:30pm is shown below. Be sure to be there on time as the
modeling. We will also review recent papers describing state-of-the-art discussion will be shorter due to 6 presentations at the end of it.
probabilistic models and computational algorithms for MMML and discuss the
current and upcoming challenges. Room WEH 4220

Bagher Zadeh Amirali

The main technical topics are: (1) multimodal representation learning, including

multimodal auto-encoder and deep learning, (2) multimodal component analysis B IETEE ] ST
and fusion, including deep canonical correlation analysis and multi-kernel Correia Joana
learning, (3) multimodal alignment and multi-stream modeling, including multi- Jang Hyeju
instance learning and multimodal recurrent neural networks, and (4) multi- Jo Yohan

sensorv comnutational modelina. includina nonnarametric Bavesian networks
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Tutorial Schedule

= |ntroduction
= What is Multimodal?
= Historical view, multimodal vs multimedia

= Why multimodal

= Multimodal applications: image captioning, video
description, AVSR,...

= Core technical challenges

» Representation learning, translation, alignment, fusion
and co-learning
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Tutorial Schedule

= Basic concepts — Part 1

= Linear models
= Score and loss functions, regularization

= Neural networks
= Activation functions, multi-layer perceptron

= Optimization
= Stochastic gradient descent, backpropagation
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Tutorial Schedule
= Unimodal representations

= Visual representations
= Convolutional neural networks

= Acoustic representations
= Spectrograms, autoencoders
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Tutorial Schedule

= Multimodal representations

= Joint representations
» Visual semantic spaces, multimodal autoencoder
= Tensor fusion representation

= Coordinated representations
= Similarity metrics, canonical correlation analysis

= Coffee break [20 mins]
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Tutorial Schedule
= Basic concepts — Part 2

= Recurrent neural networks

»= Long Short-Term Memory models
= Optimization

= Backpropagation through time
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Tutorial Schedule

= Translation and alignment

= Translation applications

= Machine translation, image captioning
= Explicit alignment

= Dynamic time warping, deep canonical time warping
= Implicit alignment

= Attention models, multi instance learning

= Temporal attention-gated model
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Tutorial Schedule

= Multimodal fusion

= Model free approaches
= Early and late fusion, hybrid models

= Kernel-based fusion
= Multiple kernel learning

= Multimodal graphical models
= Factorial HMM, Multi-view Hidden CRF
= Multi-view LSTM model
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What Is
Multimodal?



What is Multimodal?
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Multimodal distribution

» Multiple modes, i.e., distinct “peaks”
(local maxima) in the probability
density function
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What is Multimodal?

Attention

Memories

Preferences

S,

lsypearance

Sensory Modalities
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What is Multimodal?

Modality
The way In which something happens or is experienced.

« Modality refers to a certain type of information and/or the
representation format in which information is stored.

e Sensory modality: one of the primary forms of sensation,
as vision or touch; channel of communication.
Medium (“middle”)

A means or instrumentality for storing or communicating
iInformation; system of communication/transmission.

« Medium is the means whereby this information is
delivered to the senses of the interpreter.
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Examples of Modalities

1 Natural language (both spoken or written)
d Visual (from images or videos)

d Auditory (including voice, sounds and music)
1 Haptics / touch
d Smell, taste and self-motion

 Physiological signals
» Electrocardiogram (ECG), skin conductance

d Other modalities
* Infrared images, depth images, fMRI
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Multimodal Communicative Behaviors

erbal isual

Lexicon Gestures
Words Head gestures

Syntax Eye gestures
Part-of-speech Arm gestures
Dependencies Body language

Pragmatics Body posture
Discourse acts Proxemics

0ca| Eye contact
Head gaze
Prosody
Eye gaze

Intonation
Voice quality

Vocal expressions

Facial expressions

FACS action units
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Multiple Communities and Modalities
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A Historical View



Prior Research on “Multimodal”

Four eras of multimodal research
» The ” " era (1970s until late 1980s)

» The “computational” era (late 1980s until 2000)
» The “interaction” era (2000 - 2010)

> The ” "era (2010s until ...)

+» Main focus of this tutorial

1970 1980 1990 2000 2010
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The “ ” Era (1970s until late 1980s)

Multimodal Behavior Therapy by Arnold Lazarus [1973]
» [ dimensions of personality (or modalities)

Multi-sensory integration (in psychology):
« Multimodal signal detection: Independent decisions vs.
Integration [1980]
» Infants' perception of substance and temporal synchrony
In multimodal events [1983]
* A multimodal assessment of behavioral and cognitive deficits in
abused and neglected preschoolers [1984]

QO TRIVIA: Geoffrey Hinton received his B.A. in Psychology ©

1970 1980 1990 2000 2010
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Language and Gestures

David McNeill
University of Chicago
N Center for Gesture and Speech Research

“For McNeill, gestures are in effect the speaker’s
thought in action, and integral components of speech,
not merely accompaniments or additions.”

1970 1980 1990 2000 2010

Language Technologies Institute



The McGurk Effect (1976)

Hearing lips and seeing voices — Nature

1970 1980 1990 2000 2010
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http://www.nature.com/articles/264746a0

The McGurk Effect (1976)

Hearing lips and seeing voices — Nature

1970 1980 1990 2000 2010
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http://www.nature.com/articles/264746a0

» The “Computational” Era(Late 1980s until 2000)

1) Audio-Visual Speech Recognition (AVSR)

« Motivated by the McGurk effect
* First AVSR System in 1986

“Automatic lipreading to enhance speech recoqgnition”

« Good survey paper [2002]

“Recent Advances in the Automatic Recoqgnition of
Audio-Visual Speech”

O TRIVIA: The first multimodal deep learning paper was about
audio-visual speech recognition [ICML 2011}

1970 1980 1990 2000 2010

Language Technologies Institute



http://dl.acm.org/citation.cfm?id=911713
http://www.ifp.illinois.edu/~ashutosh/papers/IEEE AVSR.pdf
http://www.ifp.illinois.edu/~ashutosh/papers/IEEE AVSR.pdf

» The “Computational” Era(Late 1980s until 2000)
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» The “Computational” Era (Late 1980s until 2000)

2) Multimodal/multisensory interfaces

« Multimodal Human-Computer Interaction (HCI)

“Study of how to design and evaluate nhew computer
systems where human interact through multiple
modalities, including both input and output modalities.”

1970 1980 1990 2000 2010
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» The “Computational” Era (Late 1980s until 2000)

2) Multimodal/multisensory interfaces
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Glove-talk: A neural network interface between a data-glove and a
speech synthesizer By Sidney Fels & Geoffrey Hinton [CHI'95]

1970 1980 1990 2000 2010
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http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=182690

» The “Computational” Era (Late 1980s until 2000)

Rosalind Picard

Affective Computing is
computing that relates to, arises
- from, or deliberately influences

emotion or other affective
phenomena.

Computers that
feel

1970 1980 1990 2000 2010
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» The “Computational” Era (Late 1980s until 2000)

Carnegie
Me]longl

Universi _
i“ ldﬂu!:[[lleudd!-g un;.er: a.n I“m

' [1994-2010]

“The Informedia Digital Video Library Project automatically combines speech,
image and natural language understanding to create a full-content searchable
digital video library.”

1970 1980 1990 2000 2010
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» The “Computational” Era (Late 1980s until 2000)

3) Multimedia Computing

Multimedia content analysis

= Shot-boundary detection (1991 -)
= Parsing a video into continuous camera shots
= Still and dynamic video abstracts (1992 -)
= Making video browsable via representative frames (keyframes)
= Generating short clips carrying the essence of the video content
= High-level parsing (1997 -)
= Parsing a video into semantically meaningful segments
=  Automatic annotation (indexing) (1999 -)
= Detecting prespecified events/scenes/objects in video

1970 1980 1990 2000 2010
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http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=888862&tag=1

Multimodal Computation Models

* Hidden Markov Models [1960s]
TEE
()

O Factorial Hidden Markov 1 Coupled Hidden Markov

Models [1996] Models [1997

1970 1980 1990 2000 2010
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Multimodal Computation Models

« Artificial Neural Networks [1940s]

weights

puts

P e
l_
O Backpropagation [1975]  Convolutional neural
networks [1980s]

1970 1980 1990 2000 2010
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» The “Interaction” Era (2000s)

AMI Project [2001-2006, IDIAP]

« 100+ hours of meeting recordings
 Fully synchronized audio-video
» Transcribed and annotated

CHIL Project [Alex Waibel]

« Computers in the Human Interaction Loop
« Multi-sensor multimodal processing
« Face-to-face interactions

QO TRIVIA: Samy Bengio started at IDIAP working on AMI project

1970 1980 1990 2000 2010

33
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» The “Interaction” Era (2000s)

1) Modeling Human Multimodal Interaction

CALO Project [2003-2008, SRI]
» Cognitive Assistant that Learns and Organizes
» Personalized Assistant that Learns (PAL)

Fersonalized Assistant that Leams . S|r| was a Sp|n0ff from th|s pl’OjeCt

SSP Project [2008-2011, IDIAP]

« Social Signal Processing
4  First coined by Sandy Pentland in 2007
Social Signal Processing Network » Great dataset repository: http://sspnet.eu/

Q TRIVIA: LP’s PhD research was partially funded by CALO ©

1970 1980 1990 2000 2010

34
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http://sspnet.eu/

» The “Interaction” Era (2000s)

2) Multimedia Information Retrieval

o 401010 “Yearly competition to
| of  DIGITAL VIDEO promote progress in
1 RETRIEVAL content-based retrieval

at

NIST from digital video via open,
e T T— metrics-based evaluation”

[Hosted by NIST, 2001-2016]

Research tasks and challenges:
« Shot boundary, story segmentation, search
« “High-level feature extraction”. semantic event detection
 Introduced in 2008: copy detection and surveillance events
 Introduced in 2010: Multimedia event detection (MED)

1970 1980 1990 2000 2010
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Multimodal Computational Models

= Dynamic Bayesian Networks
= Kevin Murphy’s PhD thesis and Matlab toolbox
= Asynchronous HMM for multimodal [samy Bengio, 2007]

y’\ M e
. /'s.lm‘m
Audio-visual % 7
speech

segmentation

1970 1980 1990 2000 2010
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Multimodal Computational Models

= Discriminative sequential models
= Conditional random fields [Lafferty et al., 2001]

5§86

= Latent-dynamic CRF [Morency et al., 2007]

z

1970 1980 1990 2000 2010
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» The “ ” era (2010s until ...)

Representation learning (a.k.a. deep learning)

* Multimodal deep learning [ICML 2011]
« Multimodal Learning with Deep Boltzmann Machines [NIPS 2012]

* Visual attention: Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention [ICML 2015]

Key enablers for multimodal research:
* New large-scale multimodal datasets
» [Faster computer and GPUS
« High-level visual features
« “Dimensional” linguistic features

Our tutorial focuses on this era! h




» The “ ” era (2010s until ...)

Many new challenges and multimodal corpora !!

Audio-Visual Emotion Challenge (AVEC, 2011-)

 Emotional dimension estimation
« Standardized training and test sets
« Based on the SEMAINE dataset

 Emotional dimension estimation
« Standardized training and test sets
« Based on the SEMAINE dataset

1970 1980 1990 2000 2010
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» The “ ” era (2010s until ...)

Renew of multimedia content analysis !
* I[mage captioning

The man at bat readies to swing at the A large bus sitting next to a very tall
pitch while the umpire looks on. building.

= Video description
= Visual Question-Answer

1970 1980 1990 2000 2010
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Real-World Tasks Tackled by Multimodal Research

Affect recognition . .
=  Emotion . . .
= Persuasion o . .
= Personality traits
Media description
= |mage captioning
= Video captioning
= Visual Question Answering
Event recognition

= Action recognition
= Segmentation

Multimedia information retrieval

=  Content based/Cross-media = % & W %

Language Technologies Institute




Core Technical
Challenges



Core Challenges in “Deep” Multimodal ML

Representation Multimodal Machine Learning:
_ A Survey and Taxonomy

Alignment |

By Tadas Baltrusaitis, Chaitanya Ahuja,

. and Louis-Philippe Morency
Fusion
https://arxiv.org/abs/1705.09406
Translation 15 core challenges
] V137 taxonomic classes

Co-Learnin g 253 referenced citations

These challenges are non-exclusive.

HVIVS TGO THioliluilc



https://arxiv.org/abs/1705.09406

Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations:

Representation

Modality 1 Modality 2

Language Technologies Institute




Joint Multimodal Representation

_ _ Tensed voice
Joint Representation

(Multimodal Space)
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Joint Multimodal Representations

Audio-visual speech recognition
[Ngiam et al., ICML 2011]

« Bimodal Deep Belief Network

Image captioning
[Srivastava and Salahutdinov, NIPS 2012]

« Multimodal Deep Boltzmann Machine

Audio-visual emotion recognition
[Kim et al., ICASSP 2013]

» Deep Boltzmann Machine

Language Technologies Institute
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Multimodal Vector Space Arithmetic

Nearest images

- blue + red =

- blue + yellow = IREREEE =

- yellow + red =

A
K

- white + red =
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Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations: Coordinated representations:
Representation Repres. 1 =P Repres 2
Modality 1 Modality 2 Modality 1 Modality 2

Language Technologies Institute




Coordinated Representation: Deep CCA

Learn linear projections that are maximally correlated:

(u*,v*) = argmax corr(u’ X, vTY)

wv ,,' . View H, V\\
H.@0 00 @@ eoH,
. . o. .... Uu uV
. 0 v’ 00 00 | ]
¢ ° : ‘. .‘u. \. °° Wx“ “WV
"L e 09 00 | ]
X ) Y Text Image
¢ X Y

Andrew et al., ICML 2013
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Core Challenge 2: Alignment

Definition: Identify the direct relations between (sub)elements from two or
more different modalities.

Modality 1 Modality 2

@ Explicit Alignment

[ J
[ J
\ é The goal is to directly find correspondences

between elements of different modalities

Implicit Alignment

e Uses internally latent alignment of modalities in

m /G order to better solve a different problem

IS
=
=

—

o
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©

>
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c

S
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Implicit Alignment

“A dog with a_tennis ball is swimming in murky water”

\

[ dog tennis ball H dog swimming 'l murky water

Karpathy et al., Deep Fragment Embeddings for Bidirectional Image Sentence Mapping,
https://arxiv.org/pdf/1406.5679.pdf
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Attention Models for Image Captioning

Distribution Output

word

ovenfeatures:
Xuet.al,, ICML 2015
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Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a
prediction task.

@ Model-Agnostic Approaches

1) Early Fusion 2) Late Fusion
Modality 1 ) MOdallty 1‘ Clascifi ”

w Classifier | mmm) )
Modality 2 s Modality 2= L Classifis™=>
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Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a
prediction task.

Model-Based (Intermediate) Approaches

1) Deep neural networks
2) Kernel-based methods

3) Graphical models

Multi-View Hidden CRF

Language Technologies Institute




Core Challenge 4: Translation

Definition: Process of changing data from one modality to another, where the
translation relationship can often be open-ended or subjective.

@ Example-based ‘ Model-driven

Dictionary of translations

e ¢ 11anslation model

Training
Translation
Translation model
-
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Core Challenge 4 — Translation

Visual gestures Transcriptions
(both speaker and  Cr—— +
listener gestures) Audio streams

Marsella et al., Virtual character performance from speech, SIGGRAPH/Eurographics
Symposium on Computer Animation, 2013
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Core Challenge 5: Co-Learning

Definition: Transfer knowledge between modalities, including their
representations and predictive models.

Prediction

Modality 2
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Core Challenge 5: Co-Learning

@ Parallel ‘ Non-Parallel @ Hybrid

D

Dataset

Dataset Dataset




Taxonomy of Multimodal Research | pupsarivorgansiizos.00406

Representation o Encoder-decoder = Model-based
« Joint o Online prediction o  Kernel-based

o Neural networks Alignment o Graphical models
o Neural networks

o Graphical models n EXpliCit
o Sequential o Unsupervised Co-learning
* Coordinated o Supervised = Parallel data
o Similarity = Implicit o Co-training
o Structured o Graphical models o Transfer learning
Translation o Neural networks = Non-parallel data
= Example-based Fusion = Zero-shot learning
o Retrieval = Model agnostic . Conceptgrourllding
o Combination = Transfer learning

o Early fusion _
= Model-based o Late fusion = Hybrid data

o Grammar-based o Hybrid fusion = Bridging

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy
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https://arxiv.org/abs/1705.09406

Multimodal Applications [ hitps://arxiv.org/abs/1705.09406 |

CHALLENGES
APPLICATIONS REPRESENTATION TRANSLATION FusioN ALIGNMENT CO-LEARNING
Speech Recognition and Synthesis
Audio-visual Speech Recognition
(Visual) Speech Synthesis
Event Detection
Action Classification
Multimedia Event Detection
Emotion and Affect
Recognition
Synthesis
Media Description
Image Description
Video Description
Visual Question-Answering
Media Summarization
Multimedia Retrieval
Cross Modal retrieval

Cross Modal hashing

v’ v’ v’
v

v’ v’
v’ v’

AN
AN
AN

O CC K

COJOOCC OO 0 KX

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy
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https://arxiv.org/abs/1705.09406

Basic Concepts:
Score and Loss
Functions



Linear Classification (e.g., neural network)

(Size: 32*32*3)

1. Define a (linear) score function
2. Define the loss function (possibly nonlinear)
3. Optimization

Language Technologies Institute



1) Score Function

Image

g Duck?  what should be
Cat ? the prediction
Dog ? score for each

Pig ? label class?
| .
(Size: 32*32*3) Bird *
For linear classifier: Input observation (it element of the dataset)
: [3072x1]

f O W,b) = Wx; + b

Weights [10x3072]  Bias vector [10x1]

J
Class score '
[10x1] Parameters [10x3073]
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Interpreting a Linear Classifier

fo>0 st The planar decision surface
flx) =0 in data—;pape_ for the simple
fx)<0 linear discriminant function:

Language Technologies Institute



Some Notation Tricks — Multi-Label Classification

W — [W1 WZ WN]

f(xl-; W, b) — le' + b —> f(xl-; W) — le'

Weights x Input + Bias Weights x Input
[10x3072]  [3072x1] [10x1] [10x3073]  [3073x1]
The bias vector will Add a “1” at the
be the last column of end of the input
the weight matrix observation vector

Language Technologies Institute



Some Notation Tricks

General formulation of linear classifier:  f(x;; W, b)

“dog” linear classifier:
f(xi; Wdogr bdog) or

f(xi; W,b)aog or  fdog
Linear classifier for label j:

f (xi; W;, by) or

f(xi; W,b); or fi

Language Technologies Institute



Interpreting Multiple Linear Classifiers

apiane Gt I I % - [ O

" B B — . M . automobile E.'-Eﬁh.-‘
f(xl’ WI g b]) VV] X T b] o Emal NES ¥ EEW
cat Eﬁ@...‘.@ &
wer [ PRI NS N I R
oo [HESE]® BRI s\ B
- ..Hﬂ..ﬂ!
norse [ R e ) 1 R T TR
s e e IR -
ek ) s P S o L B

) CIFAR-10 object
car classifier fcar recognition dataset

airplane classifier @
f airplane .

deer classifier

fdeer
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Linear Classification: 2) Loss Function
(or cost function or objective)

Scores Label —p LOoSS
f; W)  yi=2(dog)  Li=?
Irage i 0 (duck)? -12.3 How to assign
: 1 (cat) ? 45.6 only one number
k 2 (dog) ? 98.7 = representing
‘ 3 (pig) ? 12.2 how “unhappy”
(Size: 32*32*3) 4 (bird) ? -45.3 we are about
Multi-class problem these scores?

The loss function quantifies the amount by which
the prediction scores deviate from the actual values.

“ A first challenge: how to normalize the scores? -




First Loss Function: Cross-Entropy Loss
(or logistic loss)

Logistic function: _ !
o(f) 1+e 7/
1
o(f)
05—
0 | —_—
0 / » Score function
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First Loss Function: Cross-Entropy Loss
(or logistic loss)

Logistic function:

1
G(f)=1+e‘f

Logistic regression:  p(y; = "dog"|x;w) = o(wTx;)

 —

f > Score function

(two classes) = true
for two-class problem
[ 5
1
a(f) |
0.5
)
1
1
)
0 |
0
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First Loss Function: Cross-Entropy Loss
(or logistic loss)

Logistic function:

1
G(f)=1+e‘f

Logistic regression:  p(y; = "dog"|x;w) = o(wTx;)
(two classes) = true

for two-class problem

l

efy'

Softmax function: _ _
(multiple classes) pilx; W) = Y. el
J

Language Technologies Institute



First Loss Function: Cross-Entropy Loss

Cross-entropy loss:

(or logistic loss)

Softmax function

Minimizing the
negative log likelihood.

Language Technologies Institute



Second Loss Function: Hinge Loss
(or max-margin loss or Multi-class SVM loss)

L; Zma’x(()) f(xiaw)j _ f(wi’W)yi —'_A)
T I7Y; T
lossdueto X

example i sum over all
Incorrect labels

difference between the correct class
score and incorrect class score

1 L 1L delta
I E b +

scores for other classes score for correct class

score

Language Technologies Institute



Second Loss Function: Hinge Loss
(or max-margin loss or Multi-class SVM loss)

L; = Z ma,x(O, f(wza W)j _ f(wi’W)yi i3 A)

J7Y;i I
e.g. 10

Example:  f(z;, W) = [13,-7,11]
Y; = 0

L; = max(0,—7 — 13 + 10) + max(0,11 — 13 + 10)

How to find the optimal W?

Language Technologies Institute



Basic Concepts:
Neural Networks



Neural Networks — inspiration

= Made up of artificial neurons

impulses carried
toward cell body

branches

dendrites of axon

axon

nucleus terminals

impulses carried

wo
away from cell body

*@® synapse
axon from a neuron ™
Wy

/" cell body

i (Z w;T; + b)

w11
> w;x; +b >
zi: Sa output axon
activation
function

W22
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Neural Networks — score function

= Made up of artificial neurons

= Linear function (dot product) followed by a nonlinear
activation function

= Example a Multi Layer Perceptron

input layer

hidden layer 1 hidden layer 2
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Basic NN building block

= Weighted sum followed by an activation function

Input Xn ] e e 'x? ;x; X

Weighted su
Wx+b

Activation functionl J |
Output (%) | »:Vz ) ()

y = f(Wx + b)
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Neural Networks — activation function

= f(x) =tanh(x)

= Sigmoid - f(x) = (1 + e ) ! T

= Linear—f(x) =ax+»b

0
sigmoid

= RelU f(x)=max(0,x)~log(1l+ exp(x))
= Rectifier Linear Units

= Faster training - no gradient vanishing
= Induces sparsity

0
-4 -1 0 1
RelLU (soft and hard)

Language Technologies Institute



Neural Networks — loss function

» Already discussed it — cross-entropy, Euclidean
loss, cosine similarity, etc.

= Combine it with the score function to have an
end-to-end training objective

= As example use Euclidean loss for data-point |

Ly = (f(x;) — )’i)z — (f3;W3 (fz;w2 (f1;w1(xi))))2

* Full loss is computed across all training samples

L= (fGx) = )2

Language Technologies Institute



Multi-Layer Feedforward Network

Activation functions (individual layers)
fiw, (x) = o(Wix + by)
fow, (x) = a(Wox + by) 70
faw, (x) = o(W3x + b3)

Score function

yi = f(x;) = f3;W3 (fz;wz (fl;w1 (x:)))

4
®
I

hidden layer 1 hidden layer 2

D
%
X

N
.t
N
> (‘\‘4
e\
OO

b

%
24

input layer

Loss function (e.g., Euclidean loss)

L = (f(xp) — }’i)z — (fs;w3 (fz;w2 (f1;w1(xi))))2
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Basic Concepts:
Optimization



Optimizing a generic function

= We want to find a minimum (or maximum) of a
generic function

= How do we do that?

= Searching everywhere (global optimum) is
computationally infeasible

= We could search randomly from our starting point
(mostly picked at random) — impractical and not
accurate

* |nstead we can follow the gradient
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What is a gradient?

= Geometrically

= Points in the direction of the greatest rate of increase of the function and
its magnitude is the slope of the graph in that direction

= More formally in 1D

af() . flr+h) = f@) LN
——— = lim A
dx h—0 h -
* In higher dimensions
of _ flaq,...,a; +h,..,a,) — f(aq, ...,a; ..., a,)
a_xi(al' vy Qp) = lim P

» In multiple dimension, the gradient is the vector of (partial derivatives)
and is called a Jacobian.
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Gradient Computation

Chain rule:
dy 0dydh
dx 0hox y) y=f(h)
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Optimization: Gradient Computation

Multiple-path chain rule:

_ = - h,h,h
Y E 6hj0x y f(hy, by, h3)
J

b = g(x)
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Optimization: Gradient Computation

Multiple-path chain rule:

9y N9y ohy (%) ¥ = Flhy, hy h)
d0x4 — 0h; 0x;
J
0x, L 0h; 0x
J
0x3 4L 0h; 0x

J

Language Technologies Institute



Optimization: Gradient Computation

Vector representation:

dy 0y 0y
= = h
X axl’axz'axJ y)y=fh)
Gradient
3 T
\ oh h) h=g(x)
V,y = a Vi v (
\
/ “backprop” Gradient

“local” Jacobian @

(matrix of size |h| X |x| computed
using partial derivatives)
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Backpropagation Algorithm (efficient gradient)

L =—logP(Y =vy|z)
(cross-entropy)

Forward pass

= Following the graph topology,

compute value of each unit z = matmult(h,, W3)

Backpropagation pass
= |nitialize output gradient =1 @ hy, = f(hy; W5)

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X
“backprop” gradient
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How to follow the gradient

= Many methods for optimization
= Gradient Descent (actually the “simplest” one)
= Newton methods (use Hessian — second derivative)

= Quasi-Newton (use approximate Hessian)
= BFGS
= LBFGS
= Don'’t require learning rates (fewer hyperparameters)

= But, do not work with stochastic and batch methods so
rarely used to train modern Neural Networks

= All of them look at the gradient
= Very few non gradient based optimization methods
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Parameter Update Strategies

Gradient descent:

/9 (t+1) T/Ht — €y VQL —> Gradient of our loss function

New model Previous
parameters parameters

€Ex = (1 T/a)e\? + (€ 1= Decay learning rate linearly until iteration ¢

Decay Initial learning rate

Extensions: = Stochastic (“batch”)
= with momentum
= AdaGrad
= RMSProp
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Unimodal
representations:
Language Modality



Unimodal Classification — Language Modality

o =[ Word-level
m O Ll ok -
S Rl Masterful S [ classification
g’ By Antony Witheyman - January 12, 2006 % 8
© Ideal for anyone with an interest in - 9
— 0 - -
¢  disguises who likes to see the subject % 1 Part Of SpeeCh )
@ tackledin alhumourousfmanner. 8 0 (noun, verb,...)
-E 0 of 4 people found this review helpful -'5' 0

o | ' o)
= 210 Sentiment “

8 (positive or negative)
v 0
(@) MARTHA (CON'T)
© Loock d . Look at all th 0 I 2D
S e 0 Named entity “
m pecple you've helped. 0 (names Of person )
c 0 yenn
CLARK

,‘_u ]E.Et you;:ﬁe only pEt 1{:1p the good 0
- ings ey say about me. 0
(ab)} MARTHA .
x Clark, honey. If I were to use the
o bad things they say I could cover —
% Eﬂihﬁgf the house and the “one__hot” vector

|x;| = number of words in dictionary
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Unimodal Classification — Language Modality

Document-level
classification

WWWIXIY Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in
disguises who likes to see the subject
tackled in a humourous manner.

0 of 4 people found this review helpful

Sentiment ?
(positive or negative)

Written language
Input observation x;

il ellelle]l (o] e] (e} (e} |l (o] (o] (o] (e] | J (e} | I (o] (e} | CD“

MARTHA(CON'T)
Look around you. Look at all the
great things you'wve done and the
pecple you've helped.

CLARK
But you've only put up the good
things they say about me.

MARTHA
Clark, honey. If I were to use the
bad things they say I could cover

I;E:hl;i:;Z: the house and the “bag-Of-Word” VeCtOI'
|x;| = number of words in dictionary

Spoken language
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How to Learn (Better) Language Representations?

mm) Distribution hypothesis: Approximate the
word meaning by its surrounding words

m) \Words used in a similar context will lie close together

(AN ™

He was|walking [away because ...
He was|running laway because ...

— Instead of capturing co-occurrence counts directly,

predict surrounding words of every word

T
% > Y. logp(wyyluw)

t=1 —c<j<c,j#0
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How to Learn (Better) Language Representations?

walking

100 000d

300d

[0;0;0;0;....;0; 0; 1; 0;...; 0; O]

AN ™

He was
He was

Language Technologies Institute

walking
running

away because ...

away because ...

No activation function -> very fast

A

He
Was

100 000d

Away
because

300d

[0;1;0;0;....;0; 0; 0; 0;...; 0; O]
[0;0;0; 1;....;0;0; 0; 0;...; 0; O]
[0; O; 0; 0;....; 1; 0; 0; 0;...; 0; O]
[0;0;0;0;....;0; 0; 0; 0;...; 0; 1]

Word2vec algorithm: https://code.google.com/p/word2vec/




How to use these word representations

If we would have a vocabulary of 100 000 words:

Classic NLP: _ 100 000 dimensional vector 4
Walking: [0;0;0;0;....;0;0; 1; 0;...; 0; O]
Running: [0;0;0;0;....;0;0; 0; 0;...; 1; 0]

100 000d

# Similarity = 0.0

l Transform: x'=x*W

Goal: ) 300 dimensional vector R 2004
Walking: [0,1; 0,0003; 0;....; 0,02; 0.08; 0,05]

Running: [0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

&
<

Similarity = 0.9
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Vector space models of words

# While learning these word representations, we are
actually building a vector space in which all words
reside with certain relationships between them

# Encodes both syntactic and semantic relationships

‘ This vector space allows for algebraic operations:

Vec(king) — vec(man) + vec(woman) = vec(queen)
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Vector space models of words: semantic relationships

2 T T K T T T
China«
*Beijing
15 Russiat 1
Japarx
1L Moscow |
Turkey Ankara  okyo
0.5 =
Poland:
0r Germxem]ﬁ -
France Warsaw
w —HBerlin
05 F |tal‘f‘< Paris .
#Athens
Greecet ®
-1+ Spairx Rome |
# Sadrid
-1.5 | Portugal sLisbon .
_2 1 1 1 1 1 1 |
-2 -1.5 -1 0.5 0 0.5 1 1.5 2

Trained on the Google news corpus with over 300 billion words
Mikolov et al., “Distributed Representations of Words and Phrases and their Compositionality”, NIPS 2013
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Unimodal
representations:
Visual Modality



Visual Descriptors

=
The value of the LBP code of a pixel (.. y.) is given by:

LBPp = IZI : or () = Lifz > O
gl 4 $9p = 9c)2 S\ 0, otherwise.
=

. Sa ifferen i shol
I TA+12+ 14+ 18+ 016 +0°32 + 0'64 + 0128 = .‘ ;
4. Multiply by powers of two and sum %
P ...
- . » ) - ; 5 ; | ':
~ NN v —
=~ N \ -
= “

Optical Flow Gabor Jets

Haar Wavelets

[

SIFT descriptors
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Why use Convolutional Neural Networks

» Using basic Multi Layer
Perceptrons does not work
well for images

= |ntention to build more abstract
representation as we go up
every layer

Edges/blobs

Input pixels
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Why not just use an MLP for images (1)?

= MLP connects each pixel in an image to each

neuron
= Does not exploit redundancy in image structure | Mnh IR T B J
= Detecting edges, blobs KSE B
= Don’t need to treat the top left of image > ' / \\

differently from the center

= Too many parameters

= Forasmall 200 x 200 pixel RGB image the first
matrix would have 120000 x n parameters for
the first layer alone

= MLP does not exploit translation invariance

= MLP does not necessarily encourage visual
abstraction
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Main differences of CNN from MLP

= Addition of:

= Convolution layer
= Pooling layer
= Everything else is the same (loss, score and
optimization)
= MLP layer is called Fully Connected layer

depth
(SR height
_ Q0000
-~ ~00000H)
..".»
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Convolution in 2D
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Fully connected layer

Input "'xz
Weighted sum %‘}}){{ (
Wx + b ."4: \\ J
PRI
Activation function " ) . . .
Output
) (e () ()

y=f(Wx+b)
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Convolution as MLP (1)

= Remove activation

Input '” <) (o
Weia/rl:ef ;um
.//\ §

1&.

& Kernel |wy |wy | Wy

y=Wx+b (n) () (n)(n
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Convolution as MLP (2)

Remove redundant links making the matrix W sparse
(optionally remove the bias term)

Input

Kernel |wy |wy | Wy
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Convolution as MLP (3)

= \We can also share the weights in matrix W not to do
redundant computation

Input

Weighted sum
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How do we do convolution in MLP recap

= Not a fully connected layer
anymore

= Shared weights
=  Same colour indicates same

(shared) weight
Wiy Wy W3 O 0 O
O wg w, -« 0 0 0 \
0 0 w 0 0 0

W = . *

0 0 0 ws 0 0
\ 0 0 0 Wy  Ws o/
0O 0 O Wy Wy Wg

Weighted sum

Activation

L) e

OO
() ()
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Pooling layer

= Used for sub-sampling

gent st Single depth slice
112x112x64 A
pool % 11112 |4
max pool with 2x2 filters
S5almell 7 | 8 and stride 2 6 | 8
; g
| 3 | 2 [NINES 3|4
224 downsampling La 1 2 3 4
112
224 >
y

Pick the maximum value from input using a smooth
and differentiable approximation
_ i=q Xi€N

n ax;
i=1 €

Language Technologies Institute




Example: AlexNet Model

» Used for object classification task
= 1000 way classification task — pick one

| 48 “ 128 2048 20ag \dense
5 — A
224 - A 1=
. 13 T

dense dense)

N s 1000

128 Max
pooling

2048 2048
224\Hstride
“of 4
3 48
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Unimodal
representations:
Acoustic Modality



Unimodal Classification — Acoustic Modality

Digitalized acoustic signal

[0.21]
0.14
0.56
0.45
0.9
0.98
0.75
0.34
0.24
0.11
0.02]

« Sampling rates: 8~96kHz

* Bit depth: 8, 16 or 24 bits

» Time window size: 20ms
» Offset: 10ms

Input observation x;

Spectogram
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Unimodal Classification — Acoustic Modality

Digitalized acoustic signal

0.21
0.14
0.56
0.45

0.9 .
0.98 Emotion ?
0.75
0.34
0.24
0.11
0.02
0.24
0.26 . .
058 Voice quality ?

0.9

0.99

0.79

0.45

0.34

0.24

« Sampling rates: 8~96kHz

* Bit depth: 8, 16 or 24 bits

» Time window size: 20ms
» Offset: 10ms

Spoken word ?

Input observation x;

Spectogram
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Audio representation for speech recognition

= Speech recognition systems historically much more
complex than vision systems — language models,
vocabularies etc.

= Large breakthrough of using representation learning
Instead of hand-crafted features

= [Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups, 2012]

= A huge boost in performance (up to 30% on some
datasets)
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Autoencoders

= \What does auto mean?
= Greek for self — self encoding

» Feed forward network ) @IS EERI@
Intended to reproduce the § _gI o
input el G @)e o ()

= Two parts encoder/decoder % Al

» x' = f(g(x)) — score H | CICEENC
function

= g -encoder
= f -decoder
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Autoencoders

= Mostly follows Neural Network
structure
= A matrix multiplication followed by a sigmoid @ @ @

= Activation will depend on type of x : T
= Sigmoid for binary g=ocWh)

= Linear for real valued @®° o °@

= Often we use tied weights to force the = c(wx) |
sharing of weights in encoder/decoder | (&) « « «()
s wWr=wT
= word2vec is actually a bit similar to
autoencoder (except for the auto part)
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Denoising autoencoder

= Simple idea
= Add noise to input x but
learn to reconstruct original

= | eads to a more robust
representation and prevents

copying
= Learns what the relationship
IS to represent a certain x

= Different noise added during CICEENC)f
each epoch
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Stacked autoencoders

= Can stack autoencoders ® ®--® @ X
as well o {

= Each encoding unit has a 2 [ | ry
corresponding decoder - - 1 .

= Inference as before is . = 1 )
feed forward structure, g [ ] h,
but now with more UEJ’ t

hidden layers (@ @@ @ =
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Stacked autoencoders

= Greedy layer-wise training
= Start with training first layer

= Learnto encode xto hy and
to decode x from h4

= Use backpropagation

@ @0 @0 ¥
Decoder — t

= ]y
Encoder — |

® ®---® @ «x
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Stacked autoencoders

= Map from all x’'s to h4’s
=  Discard decoder for now

= Train the second layer

= Learnto encode hqto h, —[ ] h'y
and to decode h, from h, ~ Decoder= |

= Repeat for as many layers =[ ] h
Encoder 1

=[ o0 0 } h1
|

Fixed-l[‘ ®-0 .] y
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Stacked autoencoders

= Reconstruct using
previously learned decoders

mappings —[‘ ";” ‘] X'
* Fine-tune the full network Decoder — [ ] h,
end-to-end t
=[ .;. ] h2
Encoder — [ ] h4
1
(@ ®---0 @ «x
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Stacked denoising autoencoders

= Can extend thisto a
denoising model

| » @ 00 @ ¥
= Add noise when training $
each of the layers Decoder— | ] Ry
= Often with increasing amount
of noise per layer =[ ] h,
= 0.1 for first, 0.2 for second, 0.3
for third Encoder — [ ] hy
1
o @0 @ «x
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Multimodal
Representations



Core Challenge: Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations: Coordinated representations:
Representation Repres. 1 =P Repres 2
Modality 1 Modality 2 Modality 1 Modality 2

Language Technologies Institute




Deep Multimodal Boltzmann machines

=  Generative model

= |ndividual modalities trained like a
DBN

= Multimodal representation trained
using Variational approaches

= Used for image tagging and cross-
media retrieval

= Reconstruction of one modality from w D w.D
another is a bit more “natural” than in v v
autoencoder representation

= Can actually sample text and images
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Deep Multimodal Boltzmann machines

. Generated Tags Input Text 2 nearest neighbours to generated
Image Given Tags 9 image features

pentax, k10d, beach, sea,
kangarooisland, ~ surf, strand, nature, hill
southaustr.alia, shore, wave, scener'y, green
sa, australia, seascape, clouds
australiansealion, sand, ocean,
300mm waves
night, lights,
christmas, flower, nature,
<no text> nightshot, green, flowers,
nacht, nuit,notte, petal, petals, bud
longexposure,
noche, nocturna
portrait, bw,
blackandwhite,
aheram, 0505 woman, blue, red, art,
sarahc, moo people, faces, artwork, painted,
girl,blackwhite, paint, artistic
person, man surreal, gallery
bleu
fall, autumn,
unseulpixel, trees, leaves, bw, blackandwhite,
 naturey crap foliage, forest, noiretblanc,
woods, biancoenero
branches, blancoynegro
path
Model MAP Prec@50
Random 0.124 0.124
SVM (Huiskes et al., 2010) 0.475 0.758
LDA (Huiskes et al., 2010) 0.492 0.754
DBM 0.526 £ 0.007  0.791 £ 0.008

DBM (using unlabelled data) 0.585 &+ 0.004 0.836 + 0.004

Srivastava and Salakhutdinov, “Multimodal Learning with Deep Boltzmann Machines”, NIPS 2012
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Deep Multimodal autoencoders

= A deep representation e (8 oS

learning approach 0o 1 oo (0o 1 00)

= A bimodal auto-encoder \/S'hmd

. . [OO eee OO ]Representation
= Used for Audio-visual speech T
recognition [oo-}-ocu [oo-}ooo]

(OO0 eee QO] [0O ses OO |

Audio Input Video Input
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Deep Multimodal autoencoders - training

= |ndividual modalities can be

1 Audio Reconstruction  Video Reconstruction
pretralned (00 ++- 00O] (0O +++ 00)
* RBMSs 1 1

(00 ++- 00| (00 .- 00|

= Denoising Autoencoders ~_ .
. [OO eee OO ]Representation
= To train the model to

reconstruct the other modality (@] @0 0]
= Use both .. W0o) (00..-00]

] Audio Input Video Input
= Remove audio
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Deep Multimodal autoencoders - training

= |ndividual modalities can be

I Audio Reconstruction  Video Reconstruction
pretrained o)
= RBMs 1 1

(00 ++- 00| (00 .- 00|

= Denoising Autoencoders \/S'h a

= To train the model to 90 5 20 Jrepmsena
reconstruct the other modality [oo--T- 00] (et
= Use both (00 ... 00 (09" WO
. Audio Input Video Input
= Remove audio
= Remove video
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Multimodal Encoder-Decoder

= Visual modality often
encoded using CNN

= Language modality will D)
be decoded using LSTM (:)
= A simple multilayer /Q\
perceptron will be used ©)
to translate from visual 00 00 | )
(CNN) to language | |
(LSTM) @0 - 00) L0 ---00]
Text Image

X Y
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Multimodal Joint Representation

» For supervised learning tasks

= Joining the unimodal
representations:
= Simple concatenation
= Element-wise multiplication 000 -- 0001,
or summation /\
" Multilayer perceptron  p_(@@ 90 [@0-.-00lh,
= How to explicitly model
poth unimodal and
oimodal interactions?

e.g. Sentiment
(@@ - - - @® @) softmax

[QQ...QQ] [ ]

Text Image
X Y
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Multimodal Sentiment Analysis

MOSI dataset (Zadeh et al, 2016)
(& - ; Sentiment Intensity [-3,+3]
’, & e @@ ---@® @) softmax
« 2199 subjective video segments (000 ---000) h,

» Sentiment intensity annotations
* 3 modalities: text, video, audio

00 ---00),(

h)[c ACISELE

00 ---00) | ] 00 ---00)

hy = f(W - [hy, hy, hy]) Text Image Audio
X Y Z

) @000

h,

Multimodal joint representation:
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Unimodal, Bimodal and Trimodal Interactions

Speaker’s behaviors

Sentiment Intensity

— “This MOVIE is SICK” = == m= mm s o o o o o s o o s s o o s s o s o o > ?

©

-8 “This MOVie is fair” = = = mm e o o o o o o o o o o o o o > +

E Unimodal
c SIMIlE = == o o o o o >

-

LOUd VOICE [ = m= o o o s o o i s o o o e o o e o i o e > ?

= “This movie is sick” T | ——— > + +
S bimodal

g “This movie is sick” S| ————— > mmmm

al rre—s _ s o

This movie is sick Loud Voice fmm===—————— > ?

©

e “This movie is sick” Smile Loud voice [= = === == > .
g & trimodals
-IE “This movie is fair” Smile Loud voice [= == = == = = o = > +
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Multimodal Tensor Fusion Network (TFN)

Models both unimodal and
bimodal interactions:

- ol I G

e.g. Sentiment

Bimodal e

@@ ---@® @] softmax

h,( @@ --00) | Jh,
90 ---00] | ]
Text Image
X Y
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Multimodal Tensor Fusion Network (TFN)

hy ® h,

Can be extended to three modalities:

= @[] o]

Explicitly models / | \

bimodal and h[OO .- 90
» - x a
Interactions !

rraxrin | 00 - - 00)

Text Image Audio
X Y Z
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Experimental Results — MOSI Dataset

Multimodal Binary S-class  Regression Bl Binary 5-class  Regression
Baseline Acc(%) Fl  Acc(%) MAE 7 Acc(%) Fl  Acc(%) MAE  r
Raﬂdom 50.2 48.7 239 1.88 - TFNlang'uage 74.8 75.6 38.5 0.99 0.61
SAL-CNN 73.0 - - _ ] TFNacoustic  65.1 67.3 275 123 0.36
SVM-MD 716 723 320  1.10 053 TN =5 a0 3G 008 W5
RE 4 o1 310 111 05l TFN;rimodar 745 750 389 093  0.65
TEN 771 779 420 087 0.70 TFN, orrimodga;  75.3 762 397 0.919  0.66
Human 85.7 875 539 071 082

— TEN 771 779 420 0.87 0.70
A 40 1727 167 102370.17 TFNearty 752 762 39.0 096 0.63
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Coordinated
Multimodal
Representations



Coordinated Multimodal Representations

Learn (unsupervised) two or more

coordinated representations from

multiple modalities. A loss function

IS defined to bring closer these .
multiple representations. Similarity metric | cosine

/v\ distance)

00 ---00) 0000

00 00
00 ---00) |
Text Image
X Y
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Coordinated Multimodal Embeddings

Input t1
Image features s Text: a parrot rides a tricycle
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Multimodal Vector Space Arithmetic

Nearest images
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Multimodal Vector Space Arithmetic

Nearest images

>
m - box + bowl =
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Canonical Correlation Analysis

“canonical’: reduced to the simplest or clearest
schema possible

@ Learn two linear projections, one '
for each view, that are maximally

correlated: g A'f
:L /projection of X:K
(u*,v*) = argmax corr(H,, H,) H, / . H,
o @0 00 @9 .00
= argmax corr(u’ X, v'Y) U v
wv rrex ]
Text Image
X Y
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Correlated Projection

Learn two linear projections, one for each view,
that are maximally correlated:

(u*,v*) = argmax corr(uf X, v'Y)
u,v

Two views X, Y where same instances have the same color
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Canonical Correlation Analysis

We want to learn multiple projection pairs (u )X, v;Y):

(u”(‘i), ”zi)) = alll"grg?)x corr(u(Tl-)X, v{i) Y) = u{i)zxyv(i)

We want these multiple projection pairs to be orthogonal
(“canonical”) to each other:

u{l)Zva(]) = u{j)Zva(i) =0 fori :/:]

UXyyV = tT(UZXyV) where U = [u(l),u(z),..., u(k)]
and V = [v(l),v(z),..., v(k)]
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Canonical Correlation Analysis

@ Since this objective function is invariant to scaling, we
can constraint the projections to have unit variance:

Ul'sy,U=1 VIZ,wWw=I

Canonical Correlation Analysis:
maximize:  tr(UTZxyV)

subjectto:  UTZ, U =VTZ,, VW =1
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Canonical Correlation Analysis

maximize:  tr(UTZxyV)

subjectto:  UTZ, U =VTZ,, VW =1

1 0 O A4 0 0

y y 0O 1 O 0 A, O

N T o lwlo 0o 10 0 2
XY YY 0 4, 0 0 1 o0

0 0 A; 0 0 1
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Deep Canonical Correlation Analysis

Same objective function as CCA:

argmax corr (H o H y)
V.UW,W,

Linear projections
maximizing correlaton  H_ (@@ .00 (@0...00H

y
U V
@ Orthogonal projections 90 - 00
L w.| w,
@ Unit variance of the 00 00 —+
projection vectors _Text ‘ mage
X Y

Andrew et al., ICML 2013
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Deep Canonically Correlated Autoencoders (DCCAE)

X' Y’
Jointly optimize for DCCA and Text Image
autoencoders loss functions 90 00 | ]
» A trade-off between multi-view 90 - 00 | - ]

correlation and reconstruction
error from individual views

H, (@0 ...00) (@0 ..09JH,
Ul 14
rrgx Yy
w.,| W,
90 - 00
Text Image
Wang et al., ICML 2015 X Y
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Basic Concepts:
Recurrent Neural
Networks
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Feedforward Neural Network

@ L® = —logP(Y = y©]z(D)
@ @ z®® = matmult(h®, V)

a @ h® = tanh(Ux®)
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Recurrent Neural Networks
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Recurrent Neural Networks - Unrolling

L = EL(@
t

@ L® = —logP(Y = y©]z(D)

@ @ z®® = matmult(h®, V)

h® = tanh(Ux™ + Wh=1

& @ @

Same model parameters are used for all time parts.
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Recurrent Neural Networks — Language models

P(nextwordis  P(nextwordis  P(nextwordis  P(nextword is
udog”) “On”) “the”) “beach”)

-
B ey [ = |y |

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “nice”

» Model long-term information
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Recurrent Neural Networks

L = EL(@
t

@ L® = —logP(Y = y©]z(D)

@ @ z®® = matmult(h®, V)

a
a i

hW o (2)

h® = tanh(Ux® + WhE-1 \\T/

@ ©

Language Technologies Institute




Backpropagation Through Time

L= 2 L® = _Z logP(Y = y®|z®)
t t
Gradient ="backprop” gradient @

@ @ LD X “local” Jacobian

oL oL oL®

@or@ (Vz(t)l‘) Py (t) aLO 5, (t) —SlngLd(Zt)—lly(t) @ @

VA,

do(®) dh(t+1)
Vil = V, oL PYAG + V e+ L PYAG @
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Backpropagation Through Time

L= 2 L® = _Z logP(Y = y®|z®)
t t

Gradient ="backprop” gradient
X “local”’ Jacobian

i?zz(t)
ORTEN L
t
oh®
@ Vwl = z(Vth)

oh®
@ VyL = z(thL)
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Long-term Dependencies

Vanishing gradient problem for RNNSs:

h®~tanh(Wh~D)

Qutputs

Hidden
Layer

|nputs
Time 1 2 3 4 5 6 7

» The influence of a given input on the hidden layer, and therefore on
the network output, either decays or blows up exponentially as it
cycles around the network's recurrent connections.
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Recurrent Neural Networks

l R(t<D) tanh

NG
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LSTM ideas: (1) “Memory” Cell and Self Loop
[Hochreiter and Schmidhuber, 1997]

Long Short-Term Memory (LSTM)

(t-1) tanh
h SN/ +1 ®
_/ » C » h(®©
0 -1 cell
x( Self-
| loop
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LSTM Ideas: (2) Input and Output Gates
[Hochreiter and Schmidhuber, 1997]

sigmoid

o XD
S x® 0_/Output gate
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LSTM ldeas:

(3) Forget Gate [Gers et al., 2000]

g tanh
i\ _ [ sigm h(t-1)
f ] | sigm W( x@®
o sigm

)

C(t) — f@c(t_l) + i@g
h® = o®tanh(c®)

h(

sigmoid
h(t_% ) f
x(® 0_/Forget gate

sigmoid

0

~, 7
D

| x®

Output gate
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Recurrent Neural Network using LSTM Units

SENG

vV

Z VA

A} y

L T €

z(é

LSTM® o LSTM® o LSTM® fersessessens — LSTM®

¥h 6 6 o

Gradient can still be computer using backpropagation!
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Recurrent Neural Network using LSTM Units

@

LSTM® o LSTM® o LSTM® fersersessens — LSTM(T)

T o © o

Gradient can still be computer using backpropagation!
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Bi-directional LSTM Network

@ @ @ Q(z) @ 6(3) @ €(T)
\ A} a A

| %4

LSTMY fs

el

LSTM(ll)

LSTM(S) «

[]

A 4

LSTMl(Z)

\ 4

A

LSTM(S,) @ snnnnnnnnnns LSTM(ZT)
LSTMf’) ............ —_— LSTMELT)

76 6 & &
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Deep LSTM Network

T To Ty €

A} y

z(é

V
LSTMY o LSTM®) | LSTM) frrsssssesses — LSTMY)
LSTM® o LSTM® o LSTME) ferssssssses —{ LSTM®
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Translation
and Alignment
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Core Challenge 4: Translation

Definition: Process of changing data from one modality to another, where the
translation relationship can often be open-ended or subjective.

@ Example-based ‘ Model-driven

Dictionary of translations

e ¢ 11anslation model

Training
Translation
Translation model
-
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Translation

Challenges:
|.  Different representations
lI.  Multiple source modalities
lll. Open ended translations
I\VV. Subjective evaluation
V. Repetitive processes

» Speech synthesis

}HHWMMM{lﬂ,ﬂfHM}HHMW«JJ« HAHAAARHAHAM A R
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Example-based translation

= Cross-media retrieval — bounded task
= Multimodal representation plays a key role here

UIniesta is reallv impressing me.” said Zinedine

Nods of approval could be seen across the C€e.
continent: Andres Iniesta was named the best ale
player of Euro 2012. In six Spain games in Poland kin
- and Ukraine, Iniesta did not score once but ied
appreciation for the 28-year-old extends well 2is
beyond goals, it is now as broad as Europe. Iniesta ool
has not quite gained the inevitability of gravity
but the reliability of his talent is unquestionable |

Kobe Bryant said, "To be really frank with you, |

really do not look at it as that, for the simple fact

that Michael Jordan has really taught me a lot.

Really taught me a lot. The trainer of his, Tim -
Grover, he's passed on to me and | work with him

a great deal, and he's shown me a lot. So | can't

sit there and say, well, I'm trying to catch Michael

Jordan at six, | want to pass him after six.

[Wei et al. 2015]
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Example-based translation

= Need a way to measure similarity between the modalities
» Remember multimodal representations

= CCA

= Coordinated
= Joint

= Hashing

= (Can use pairs of instances to train them and retrieve closest ones
during retrieval stage

Indexed Image Latent Feature Vectors

o)
- . Image DB ; — : m ’Sﬁfﬂ:g
1~ ] Xi
= QObjective and bounded task [ S| b ™"
Image Query &:> Sssssees
Image SAE Online
Querying
Text Query h— 0 ee)
' iz i 2@5 b
E Text SAE Indexed Text Latent Feature Vectors

[Wang et al. 2014]
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Model-based Image captioning with Encoder-Decoder

Vision Language A grou_p of people
Deep CNN Generating shopplng at an
RNN outdoor market.

O ->

™~ @ There are many
vegetables at the
fruit stand.

[Vinyals et al., “Show and Tell: A Neural Image Caption Generator”, CVPR 2015]
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Visual Question Answering

= Avery new and exciting task created in part to address evaluation
problems with the above task

= Task - Given an image and a question answer the question
(http://www.visualga.org/)

r
‘ ,
y

Does it appear to be rainy?
What is just under the tree? Does this person have 20/20 vision?

What color are her eyes? How many slices of pizza are there? Is this person expecting company?
What is the mustache made of? Is this a vegetarian pizza?
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Evaluation on “Unbounded” Translations

= Tricky to do automatically!

= |deally want humans to evaluate
= What do you ask?

= Can’t use human evaluation for validating models —
too slow and expensive

» Using standard machine translation metrics
Instead

= BLEU, ROUGE CIDER, Meteor
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Core Challenge: Alignment

Definition: Identify the direct relations between (sub)elements
from two or more different modalities.

Modality 1 Modality 2 @ Explicit Alignment

The goal is to directly find
correspondences between elements of
different modalities

Implicit Alignment

Uses internally latent alignment of
modalities in order to better solve a
different problem
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Explicit alignment
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Temporal sequence alignment

Applications:

- Re-aligning asynchronous
data

- Finding similar data across
modalities (we can estimate
the aligned cost)

- Event reconstruction from

multiple sources
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Let’s start unimodal — Dynamic Time Warping

= We have two unaligned temporal unimodal
signals

" X =x,x, .., 0, | € R

" Y=|y,¥s . ¥, | € RO

= Find set of indices to minimize the alignment
difference: — T

= MW kW = MW W

l
2
VN — 5
L(pt, p:) = Z ||xp%c _yp%’ . 4 m
t=1 3 | riy \
2 Loy oy Py \
1 I [ ':' : "\\ ‘-‘
; o \
= Where pf and p; are index vectors of same Sl A A
length 3l | \
2 1
* Finding these indices is called Dynamic Time
Warplng 1 2 3 4 5 6 7 8
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Dynamic Time Warping continued

= | owest cost path in a cost

matrix s
= Restrictions o
= Monotonicity — no going back in ..
time °
= Continuity - no gaps :
= Boundary conditions - start and @)
end at the same points . ’
= Warping window - don'’t get too far .(pt' '
from diagonal ®
= Slope constraint — do not insert or .‘
skip too much o
o0
i, py)
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Dynamic Time Warping continued

= | owest cost path in a cost

: v, P} )
matrlx |j;_<|—«—o ; ot-o+o 91010
= Solved using dynamic Attt [ oo (e oy
programming whilst respecting ‘i“ R
the restrictions Frets o t¥ T ate [o [@e1s 7] ] o1
_'//.J._.ﬂ-. .«I 4-0?? 040
AT 045 |75 |3 5 (@4 33 Jodets
; o (e .4-[-. [ ] zﬂ-. L ] ;{4 0404040
5 o« { ] ) ‘14-. ® | ® .i. e B ’A_
_:3/0 ® |0 3;_/:4—03‘  J Q:L'|-. [ ] 3 04047
:4". ’x /N [ J B{. ;4|—. L J :4’-0%—
B @ (e [ ]
(o7 [P e dodSde |9 [pdr
¥ 5o @ s ee e L
'.- L 2 .4--.41-.4'|-.4'|-. 4 |

(pf:pl )
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DTW alternative formulation

2

2 Replication doesn’t change the objective!
¢¢¢ 1 0 0 0 0O
5 5 K o 00000
00 0 0000
N 4 I ooo 00000
3 3 | L1 | ooooio
(0 0 0 0 0 O OpgmO
2 2 [ B T 1 do ooooo0o0 o
1 1,| [ | | | | | I 123 45 67 89
5 SN . o
4 4' | | I Y's [ ooo0o0o0
8 3: : — |
2 21d T ‘R
10 0 0 0 0 0 O O gl

i 2 3 4 5 6 7 8 12345672809

Alternative objective: . _ _
X, Y — original signals (same #rows, possibly

2 .
LW, W,) = | xXwW, — ywy”F different #columns)
/ W, W, - alignment matrices
2
= Zi2j|ai,j|

Frobenius norm ||A||2
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DTW - limitations

= Computationally complex

: /\f,/\/ m sequences
O(nzny) o([Tn
i=1

= Sensitive to outliers

= Unimodal!
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Canonical Correlation Analysis reminder

maximize: tr(UTZxy V)
subject to: UTEyyU=VTE, V=1
>-A
Linear projections maximizing c
@ correlation gl
« /projection of X:K
Orthogonal projections
@ omownaon w /N
Unit variance of the projection e 00 @0 (1)
@ vectors U V
00 - 00 00 - 009
Text Image
X Y
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Canonical Correlation Analysis reminder

When data is normalized it is actually equivalent to smallest RMSE
reconstruction

= (CCAloss can also be re-written as:

A
>_
LW, V) = U7X ~ V7Y
subject to: UTEyyU = VTZy WV = I gl R

projection of X

H, ,/' \\\ Hy
@0 00 @0 00
U vV
00 - 900 | ]
Text Image
X Y
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Canonical Time Warping

= Dynamic Time Warping + Canonical Correlation Analysis
= Canonical Time Warping

2

L(U,V,W,,W,) = |[UTXW, — VIYW, ||

= Allows to align multi-modal or multi-view (same modality
but from a different point of view)

- W,, W, —temporal alignment
= U,V — cross-modal (spatial) alignment

[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009]
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Generalized Time warping

= Generalize to multiple sequences all of different
modality

2
L(U;,W;) = Z ZHUiTxiwi = UJ-TX]-WJ-HF
=1 j=1
= W,; — set of temporal alignments

= U; — set of cross-modal (spatial) alignments

Cc}? (1) Time warping
% (2) Spatial embedding
>

[Generalized Canonical Time Warping, Zhou and De la Tore, 2016, TPAMI]
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Alignment examples (unimodal)

CMU Motion Capture 1199 1217 1/222
Subject 1: 199 frames

Subject 2: 217 frames
Subject 3: 222 frames

Weizmann

1/40 1/44 1/43

Subject 1: 40 frames
Subject 2: 44 frames
Subject 3: 43 frames

10 20 30 10 20 30
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Alignment examples (multimodal)

1/273 1/51 1/127

n But how to model non-linear alignment functions? -



Deep Canonical Time Warping

L(01,0, W, W) = |fo, X)Wy — fo, (Y)WyH,Zg

= Could be seen as generalization of DCCA and GTW

A — e A6 AGD AGD AKD ..

NN/ /-

DR fo() — h) 86D B A . D)

SSO[ VOO

Spatial
Transformation

Temporal alignment

[Deep Canonical Time Warping, Trigeorgis et al., 2016, CVPR]
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Deep Canonical Time Warping

L(01,0, W, W) = |fo, X)Wy — fo, (Y)WyH,Zg

= The projections are orthogonal (like in DCCA)
= Optimization is again iterative:
= Solve for alignment (W,, W,) with fixed projections (6,, 6)
= Eigen decomposition
= Solve for projections (6,, 8,) with fixed alignment (W,, W)
» Gradient descent
= Repeattill convergence

[Deep Canonical Time Warping, Trigeorgis et al., 2016, CVPR]
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Implicit alignment
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Machine Translation

= Given a sentence in one language translate it to another

Dog on the beach =2 le chien sur la plage

= Not exactly multimodal task — but a good start! Each
language can be seen almost as a modality.
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Encoder-Decoder Architecture [Cho et al., “Leaming Phrase Representations
using RNN Encoder-Decoder for Statistical

for Machine Translation Machine Translation”, EMNLP 2014]

Context

1-of-N encoding 1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “le” of “chien” of “sur” of “la” of “plage”
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Attention Model for Machine Translation

= Before encoder would just take the final hidden state, now we
actually care about the intermediate hidden states

Dog
Atiention Hidden state s, ?
gate \l_
l j‘T‘
o Context z, .
hy hz hs\hy hs
Encoder — . . . . . [Bahdanau et al., “Neural Machine
Translation by Jointly Learning to Align
le  chien sur la plage and Translate”, ICLR 2015]

—
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Attention Model for Machine Translation

= Before encoder would just take the final hidden state, now we
actually care about the intermediate hidden states

Attention :
odule / Hidden state sl\f ?

Context z4 . .
hy hz h3 hey hs
EnCOder - . . . . . [Bahdanau et al., “Neural Machine
Translation by Jointly Learning to Align
le  chien sur la plage and Translate”, ICLR 2015]

—
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Attention Model for Machine Translation

= Before encoder would just take the final hidden state, now we
actually care about the intermediate hidden states

Dog on the

ﬁﬁﬁf? Hidden state s, H ?
gate L—#‘?'\T[

- Context z
i H B BN
hyhs h3\hy hs
EnCOder-‘ . . . . . [Bahdanau et al., “Neural Machine
Translation by Jointly Learning to Align
le  chien sur la plage and Translate”, ICLR 2015]

—
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Attention Model for Machine Translation

The
agreement
on

the
European
Economic
Area

was

signed
in

August
1992
<end=

L
accord

sur

la

zone
économique
européenne
a

éte

signé

en

aolt

1992

<end=
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Attention Model for Image Captioning

Distribution
over L locations
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Attention Model for Image Captioning

A0.98) woman(0.54) i5(0.37)

!’

frisbee(0.37)

park(0.35) {0.33)

throwing(0.33) in(0.21)

Xu et.al., ICML 2015
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Attention Model for Video Sequences

P o~

Temporal
attention ] ‘
- E—E—h——R—-n—n
Recurrent
attention-gated =
units

- [ Predicted event: Biking )‘_
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Temporal Attention-Gated Model (TAGM)

Saliency scores

Bidirectional RNN

Input Observations
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Temporal Attention Gated Model (TAGM)

CCV dataset
= 20 video categories
= Biking, birthday, wedding etc.

Mean average precision
65

60

55
50
45
35

ERNN mGRU ®mLSTM ®mTAGM (ours)

[Pei, Baltrusaitis, Tax and Morency. Temporal Attention-Gated Model for
Robust Sequence Classification, CVPR, 2017]
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Temporal Attention Gated Model (TAGM)
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Temporal Attention Gated Model (TAGM)

Text-based Sentiment Analysis

Score = 0.208 u
H I I | I
A grim s flat and boring werewolf movie that refuses to develop an energy level . 08
Score = 0.361
Pryor Lite ) with half the demons s half the daring s much less talent ) many fewer laughs
Score =0.75
Once  again s director Jackson strikes a rewarding balance  between emofion on the human scale and action effects on the spectacular scale
Score = 0.819
A thoughtful ) provocative s insistently humanizing film
Score = 0.792
To the film 's credit s the acting is fresh and unseliconscious s and Munch is a marvel of reality Versus sappy sentiment
Score = 0.167
For me s this opera is n't a favorite s S0 it 's a long time before the fat lady sings
Score = 0.167

The  cartoon that is n't really good enough to be on aftermoon TV is now a movie that is n't really good enough o be in theaters
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Multimodal Fusion



Multimodal Fusion

Process of joining information from two or more modalities to perform
a prediction
= One of the earlier and more established problems

= e.g. audio-visual speech recognition, multimedia event detection,
multimodal emotion recognition

= Two major types Prediction
= Model Free

= Early, late, hybrid
= Model Based Fancy

algorithm
= Kernel Methods

= Graphical models
» Neural networks
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Model free approaches — early fusion

Modality 1

Modality 2
Classifier

Modality n

= Easy to implement — just concatenate the features

= Exploit dependencies between features

= Can end up very high dimensional

= More difficult to use if features have different framerates

Language Technologies Institute



Model free approaches — late fusion

Modality 1
Classifier - -

Modality 2 Fusion

Classifier | ' mechanism

Modality n
' Classifier

Train a unimodal predictor and a multimodal fusion one

Requires multiple training stages

Do not model low level interactions between modalities

Fusion mechanism can be voting, weighted sum or an ML approach
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Model free approaches — hybrid fusion

Modality 1
Classifier

Modality 2

Classifier _
Fusion

mechanism
Modality 1

- Classifier
Modality 2

= Combine benefits of both early and late fusion mechanisms
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Multiple Kernel Learning

» Pick a family of kernels for each modality and learn which kernels are important for the
classification case

= (Generalizes the idea of Support Vector Machines

» Works as well for unimodal and multimodal data, very little adaptation is needed

[Lanckriet 2004]
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Multimodal Fusion for Sequential Data

Multi-View

Modality- structure ‘
Hidden Conditional Random Field

« Internal grouping of observations

Modality-shared structure
* Interaction and synchrony

p(y| x4, x";0) = z p(y, h4, AV x4, xV; 6)
hA,hY

» Approximate inference using loopy-belief

[Song, Morency and
Davis, CVPR 2012]
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Sequence Modeling with LSTM

IR A S ¢

LSTMg, > LSTM, M LSTM g [roreeessees — LSTM,,

6 © © ¢
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Multimodal Sequence Modeling — Early Fusion

IR A S ¢

LSTM > LSTM, o LSTM_g) freeereeesee: — LSTM,

CRCRCS
& & &
CRCRS
CRCRE
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Multi-View Long Short-Term Memory (MV-LSTM)

MV- | Mv- | oMv- e M-
LSTM(l) > LSTM(z) D LSTM(S) """""" — LSTM(T)
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Multi-View Long Short-Term Memory

| Multi-view topologies

| AL "
1 t 1)
MV- Hey L M- » U > c,éz) :O .| fi
tanh
LSTM, 20 o T L Mk g(ts) I Ct 3 K
3 3
MV-
R (1 g sigm
| e Input gate
@ |-
X
:3) o
sigm
i Forget gate -
| MV-
sigm
Output gate -
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Topologies for Multi-View LSTM

MV-
LSTM,

Multi-view topologies mmp View-specific

a=1, B=0

1) l XD ey D
MV- 2

Language Technologies Institute

Fully-
=) onnected
a=1, =1

m) Hybrid

a=2/3, 3—1/3
e

h(l) //V'\',
7/

(1)

h(2) .7 s

4

h(3) 7




Multi-View Long Short-Term Memory (MV-LSTM)

Multimodal prediction of children engagement

Class labels Model Precision | Recall | F'1

Easy to engage LSTM (Early fusion) | 0.75 0.81 |0.78
MV-LSTM Full 0.81 0.81 |0.81
MV-LSTM Coupled |0.79 0.81 |0.80
MV-LSTM Hybrid | 0.80 0.86 |0.83

Difficult to engage | LSTM (Early fusion) |0.63 0.55 |0.59
MV-LSTM Full 0.68 0.68 |0.68
MV-LSTM Coupled | 0.67 0.64 |0.65
MV-LSTM Hybrid  0.74 0.64 |0.68
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Memory Based

= A memory accumulates multimodal
iInformation over time.

= From the representations throughout a
source network.

= No need to modify the structure of the
source network, only attached the
memory.
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Memory Based

/ Multi-view Gated Memory
(t-1)

\& System of LSTMS/
t—1 t t+1 t+2 t+3 t+4
[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning, AAAI 2018]
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Multimodal Machine Learning

Representation Multimodal Machine Learning:
_ A Survey and Taxonomy

Alignment N | |

By Tadas Baltrusaitis, Chaitanya Ahuja,

. and Louis-Philippe Morency
Fusion
https://arxiv.org/abs/1705.09406
Translation 15 core challenges
] V137 taxonomic classes

Co-Learnin g 253 referenced citations
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